

The Group of Symmetries of a Square

A group is a set of elements and an operation (*) that satisfy the following properties.

- 1. Closure. When two of the elements are combined using the operation, another element in the set is obtained.
- 2. Identity. There is a "do nothing" element in the set which, when combined with any other element using the operation, leaves that other element the same.
- 3. Inverses. Every element has an inverse element which combines with it using the operation to produce the Identity.
- 4. Associativity. For any three elements in the set, x, y, and z, (x * y) * z = x * (y * z).

One simple example of a group is the set of real numbers with the operation of addition. The symmetries of a square form a group where the operation is *composition*, which in this case means applying one action followed by another.

Cayley Table for Composing Symmetries of a Square

Group Actions

A group action consists of a group that acts on a set of objects via an operation (*) that satisfies the following properties.

- 1. The identity element of the group takes every object to itself.
- 2. For all $g, h \in G$ and $x \in X$, g * (h * x) = (gh) * x.

Group Action Terminology

Fixing: We say that a group element *fixes* an object if it takes it to itself.

Stabilizer: The set of group elements that fix an object is called the *stabilizer* of the object.

- **Orbit:** The set of objects that are reachable from a given object via group actions is called the *orbit* of the object.
- **Orbit-Stabilizer Theorem:** Given a group action, the product of the size of the orbit of a given element x (written G * x) and the size of the stabilizer of x (written G_x) is equal to the size of the group (G). $|G * x| \cdot |G_x| = |G|$

$R_{0^{\circ}}$	$R_{90^{\circ}}$	R _{180°}	R ₂₇₀ °	V	Н	D_1	D_2

Orbits and Stabilizers for the Group of Square Symmetries

Counting Cube Colorings

Total Colorings in Chart (before applying symmetries):

Kind of Symmetry	Number of these symmetries	Number of colorings fixed	Total number of fixed colorings

Total Fixed Colorings:

Total Symmetry Group Elements:

Total Orbits:

Additional Challenge Questions

- 1. Suppose we want to construct cubes out of square faces that snap together and which come in four different colors. How many different cubes could be made?
- 2. Suppose we construct tetrahedra out of edge pieces that come in three different colors. How many different tetrahedra could be made?
- 3. A tic-tac-toe board is to be filled with X's and O's, with a total of five X's and four O's.
 - (a) How many different ways are there to fill the board?
 - (b) How many ways are there to fill the board if rotated versions of the same image do not count as different?
 - (c) What if neither rotations nor reflections are counted as different?
- 4. A necklace has 4 black beads and 8 white beads. How many different necklaces are there matching this description?
- 5. Write your own question that could be solved using the techniques from this session!
- 6. Consider a rectangular grid with $m \times n$ squares. Each square is colored one of two colors. If you wish, you may choose a specific m and n to work with.
 - (a) How many ways are there to do this up to 180° rotation?
 - (b) How many ways are there to do this up to horizontal and vertical reflection symmetries?
- 7. Prove the Orbit-Stabilizer Theorem (either in general or for the specific context we explored here). Why is it that every orbit always has the same amount of X's?