
QUADRATIC RECIPROCITY

SIMON RUBINSTEIN-SALZEDO

We'll begin by discussing modular arithmetic. If m is a positive integer, and a and
b are any integers, we say that a ≡ b (mod m) if a and b leave the same remainder
upon division by m, or equivalently, if a− b is a multiple of m. For any m, we can do
arithmetic modulo m: we can unambiguously add or multiply two numbers modulo
m:

Exercise 1. Prove that if a ≡ a′ (mod m) and b ≡ b′ (mod m), then a + b ≡ a′ + b′

(mod m), a− b ≡ a′ − b′ (mod m), and ab ≡ a′b′ (mod m).

Furthermore, if p is prime, we can divide modulo p.

Exercise 2. If a and b are integers, with b 6≡ 0 (mod p), then there is some integer
c so that a ≡ bc (mod p).

We think of c here as being a/b modulo p. The situation is slightly more complicated
modulo a composite number, and we won't need it in what follows.
Let's write Z/mZ for the integers modulo m; we might think of this as the numbers

from 0 to m−1. If p is prime, then Z/pZ is a lot like the real (or complex) numbers in
key ways. First of all, we can add, subtract, multiply, and divide (as long as we're not
dividing by zero). More subtly, we can also solve polynomial equations over Z/pZ.
For example, suppose we wish to solve x3−x ≡ 6 (mod 7). Then we can easily check
that the only solution in Z/7Z is x = 2. Equivalently, all solutions in Z satisfy x ≡ 2
(mod 7).
A very important fact about polynomials over Z/pZ is that they have unique fac-

torization, just like integers or polynomials over the real numbers. The factors work
the same way, so if x = a is a solution of f(x) ≡ 0 (mod p), then f(x) ≡ (x− a)g(x)
(mod p) for some polynomial g(x). A consequence of this is that a polynomial of
degree n over Z/pZ has at most n roots in Z/pZ.
Now, we can start talking about quadratic residues. For a prime p, we'd like to

understand for which integers a the equation x2 ≡ a (mod p) has solutions. With
this in mind, we'll de�ne a symbol

(
a
p

)
, called the Legendre symbol, to be +1 if

this equation has solutions, −1 if it doesn't, and, for technical reasons, we'll also
set

(
a
p

)
= 0 if a is a multiple of p. Hence,

(
a
p

)
+ 1 is the number of solutions to

x2 ≡ a (mod p) in Z/pZ. We call a a (quadratic) residue modulo p if
(

a
p

)
= 1 and a

(quadratic) nonresidue if
(

a
p

)
= −1.
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Let's try working out what
(

a
p

)
is when p = 5. Clearly,

(
a
p

)
only depends on a

(mod p), so we only have to check a = 0, 1, 2, 3, 4. We also only have to check x
values from 0 to 4. So, let's write down what x2 is modulo p for x = 0, 1, 2, 3, 4.
When we do this, we see that if a = 1 or 4, then

(
a
p

)
= 1; if a = 2 or 3, then

(
a
p

)
= −1;

and if a = 0, then
(

a
p

)
= 0.

We'd like to investigate the properties of
(

a
p

)
, so let's make a big table.

Exercise 3. For p up to 40, make a table of
(

a
p

)
.

What do we notice? Probably, we notice that if p is not 2, then half of the numbers
between 1 and p− 1 are residues, and half are nonresidues.

Exercise 4. Prove this!

What happens when a = p − 1? When is a a residue? When is it a nonresidue?
What if a = 2?
What can we say about

(
ab
p

)
in terms of

(
a
p

)
and

(
b
p

)
?

Exercise 5. Prove that
(

ab
p

)
=

(
a
p

)(
b
p

)
. (Hint: Use the previous exercise!)

Now, suppose p and q are both odd primes. How does
(

p
q

)
compare to

(
q
p

)
? This

relationship is called quadratic reciprocity.
It might be hard to �nd a pattern here, so let's suppose that p = 3. What is the

relationship between
(
3
q

)
and

(
q
3

)
?

Exercise 6. For several primes p, �nd a relationship between
(

p
q

)
and

(
q
p

)
.

We won't prove the relationship here, but we will look at several steps involved
in the proof. The �rst step is to �nd a formula for

(
a
p

)
in terms of other quantities

we might understand a bit better. The �rst ingredient we need is Fermat's Little
Theorem.

Theorem 1 (Fermat's Little Theorem). If a is not divisible by p, then ap−1 ≡ 1
(mod p).

Hence, if p is an odd prime, and a is not divisible by p and b = a(p−1)/2, then b2 ≡ 1
(mod p). Since the polynomial x2 − 1 has only two roots, 1 and −1, modulo p, then
b must be either 1 or −1 modulo p.

Exercise 7. Show that
(

a
p

)
≡ a(p−1)/2 (mod p).

Okay, so we've turned the Legendre symbol into something involving the exponen-
tial function; this is an improvement! Almost all proofs of quadratic reciprocity start
with this observation. Many involve the following observation as well.
For p an odd prime and a an integer, there is a unique integer t(a) between −p−1

2

and p−1
2

so that a ≡ t(a) (mod p). We call t(a) the minimal residue of a modulo p.

Now, let µ(a) be the number of k from 1 to p−1
2

so that t(ak) is negative.
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Exercise 8. Show that if a is not divisible by p,
(

a
p

)
= (−1)µ(a).

Exercise 9. Use the previous exercise to prove your conjectures about
(−1

p

)
and

(
2
p

)
.

Exercise 10. Let p be an odd prime, and let a be an integer not divisible by p. What
is the relationship between

(
a
p

)
and

(−a
p

)
?

Exercise 11. Show that any a ∈ Z/pZ is the sum of two squares in Z/pZ.

Exercise 12. Show that if a is an integer, and p and q are two primes so that p ≡ q
(mod 4a), then

(
a
p

)
=

(
a
q

)
. This explains why a 4 shows up in

(−1
p

)
and an 8 shows

up in
(
2
p

)
.

Theorem 2 (Quadratic reciprocity theorem). Suppose p and q are distinct odd

primes. Then (
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Exercise 13. Assuming the quadratic reciprocity theorem, evaluate
(

37
103

)
.

Exercise 14. Evaluate
(−3

p

)
for odd primes p. Use this to prove that there are

in�nitely many primes of the form 6n + 1.
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