
Some mathematics associated with SET
by J. B. Conrey

Here are some mathematics questions motivated by the card game SET.

(1) How many cards are there in a SET deck?
(2) If you pull three cards at random from a SET deck, what is the probability that they

make a SET?

SETs can be categorized by how many of the four characteristics the three cards in the SET
share. For example, the SET consisting of one plain red diamond, two plain red ovals, three
plain red squiggles is a SET with two characteristics (red-ness and plain-ness) in common.

(3) If you pull three cards at random from a SET deck, what is the probability that they
make a SET with three characteristics the same?

(4) If you pull three cards at random from a SET deck, what is the probability that they
make a SET with two characteristics the same?

(5) If you pull three cards at random from a SET deck, what is the probability that they
make a SET with one characteristic the same?

(6) If you pull three cards at random from a SET deck, what is the probability that they
make an all different SET?

Two pairs of two cards each of which needs the same third card to form a set are called
amicable pairs.

(7) If you pull four cards at random from a SET deck, what is the probability that they
can form amicable pairs?

Three pairs of card which have the property that the three cards needed to form SETs from
the pairs themselves form a SET is called a PHANTOM.

(8) If six cards can be separated into three pairs that form a PHANTOM, prove that no
matter how you separate the six cards into pairs, they always form a PHANTOM.

(9) If you pull six cards at random from a SET deck, what is the probability that they
make a PHANTOM?

Let F3 be the numbers {0, 1, 2} with arithmetic mod 3. SET cards can be identified with
points in the 4-dimensional space S = F4

3. Think of each attribute – color, number, shape,
and shading – as representing one dimension. S is a 4-dimensional vector space. We can
add vectors in S just by adding the components. For example (1, 2, 0, 1) + (2, 2, 1, 0) =
(0, 1, 1, 2), the addition is just mod 3. Also, we can do scalar multiplication in S, for example
2(2, 1, 0, 2) = (1, 2, 0, 1). The ability to do addition and scalar multiplication is what makes
it a vector space.

(10) Show that SETs are just lines in this 4-dimensional space.
(11) How many lines pass through a given point in F3

3? What about F4
3?

(12) How many planes pass through a given point in F3
3? What about F4

3?
(13) How many planes pass through a given line in F3

3? What about F4
3?

A cap is a collection of cards which have no SET but the addition of any card to the collection
means that the collection has a SET.
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(14) Suppose that we are playing SET with only the red ovals. What is the maximum
size of a cap?

(15) Now suppose we are playing with all of the red cards. What is the maximum size of
a cap?

Follow the exercises below to give two different proofs that the answer to the previous exercise
is 9. First of all find a cap of size 9. Next, to show that there is no larger one, begin by
assuming that there is a cap of size 10 in the three dimensional version of SET (i.e. using
only the red cards) and we’ll proceed to get a contradiction. Call this cap C. So C is
supposed to be a collection of 10 points in F3

3 with no line. We’ll show in two different ways
that C can’t really exist. The first way uses the pigeon-hole principle. Start by dividing F3

3

into three parallel planes. (Remember that we can think of F3
3 as the red cards. One way

to split this into three parallel planes would be that the ovals are one plane, the squiggles
another, and the diamonds are the third.) Call these planes H1, H2 and H3.

(16) Show that the intersection of a cap in dimension 3 with any plane results in a cap of
dimension 2.

(17) Let #(H∩C) be the number of points in the intersection of the cap C with the plane
H. Show that the triples (#(H1 ∩ C), #(H2 ∩ C), #(H3 ∩ C)) are either (4,3,3) or
(4,4,2).

(18) Assume that H3 is the plane with the minimal size of intersection with C. Then
there are at least 7 points of C not in H3.

(19) Let A and B be two points in C ∪ H3. There are four planes that pass through A
and B, one of which is H3; call the others P1, P2, and P3. One of P1, P2, and P3

contains 3 points. (Why?) That plane contains 5 points of C which porves that C is
not a cap. (Why?)

Now we begin the second proof. We assume again that our cap C with 10 points exists.
There are lots of ways to split F3

3 up into three parallel hyperplanes.

(20) Show that there are 13 different ways to form a splitting into planes. (Hint: Each such
splitting determines a vector perpendicular to the planes. How many such vectors
are there?)

Each such splitting results in a triple (4,3,3) or (4,4,2) according to the intersections with C.
Let a be the number of splittings which result in a (4,4,2) and b be the number of splittings
with (4,3,3). By the previous exercise a + b = 13. Now we count 2-marked planes; these are
planes together with two points of C that lie in the plane.

(21) Show that there are 4
(

10
2

)
= 180 2-marked planes.

(22) Now show that each splitting of type (4,3,3) results in
(

4
2

)
+

(
3
2

)
+

(
3
2

)
= 12 different

2-marked planes and each splitting of type (4,4,2) results in
(

4
2

)
+

(
4
2

)
+

(
2
2

)
= 13

different 2-marked planes. Conclude that 13a + 12b = 180. Solve the simultaneous
equations in a and b and derive a contradiction.

Now do the same thing but one dimension higher to show that the maximum number of
cards without a SET is 20. This time you will need to consider 2-marked and 3-marked 3-
dimensional hyper-planes as well. See www.warwick.ac.uk/staff/D.Maclagan/papers/set.pdf
for details.


