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1 What Isa Geodesic Dome?
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Figure 1: 6V Geodesic Dome and Buckminster Fuller Stamp

The geodesic dome was invented by R. Buckminster (BuckygF(1895-1983) in 1954. Fuller was an inventor,
architect, engineer, designer, geometrician, cartognaghd philosopher. In Figure 1 is illustrated a fairly coaxpl
version of a dome that’'s composed of small triangles thatpproximately equal, and such that the vertices of the
triangles all lie on the surface of a sphere. On the right effthure is a recently-released postage stamp honoring
Fuller.

In this article, we'll look at the mathematics that lies behgeodesic domes, but we'll also talk a little about why
they make good engineering sense and how they might be ootestrfrom real materials.

There are plenty of resources on the web on geodesic domesnéuhat’s particularly helpful, especially if you
have any desire to build one of your own, is he#@w.desertdomes. com, which includes a dome calculator that
does many of the calculations for you.

2 Engineering Considerations

A sphere is the mathematical object that contains the maxinmalume compared to its surface area, so if a structure
of large volume is to be constructed for minimum cost, it nsa&ense to look at structures whose shape approaches a
sphere. But most construction materials come as flat ogsttrpieces, so forming the curves that would be necessary
to make a perfect sphere might increase the expense caaisigler

But structures like the one illustrated in Figure 1 closgdpr@ximate spheres, but are composed of straight struts
or of flat triangles, depending on the construction method.

If the structure is composed of struts, there is anotheriderstion; namely, that it should be composed completely
of triangles. If it consists of any quadrilaterals or morenpdex polygons, they can flex if the connections at the ends
are not completely rigid. If the pieces, for example, ar¢ gennected with a bolt through a number of struts, it is
almost impossible to make the joints rigid. But if the sturetis completely composed of triangles, it can be made
completely rigid, even if the individual joints are not.



One final engineering consideration is that if the trianglesvhich the structure is composed are all as close to
equilateral triangles as possible, then the stresses evdbiproximately the same on all the struts, so there is \itlgy i
wasted strength. Note that in the model at the beginningisfitticle, all of the triangles appear to be approximately
equilateral.

Finally, in very large structures, it is a bad idea to have/\eng unsupported struts. The longer the struts, the easier
they are to bend if shear forces are applied.

3 Perfect and Imperfect Solutions

Figure 2: Platonic Solids

A perfect solution will be composed of triangles that areegjlilateral, all the same size, and all making equal
angles with each other. Unfortunately, this can only beexad with three mathematical forms: the tetrahedron, the
octahedron and the icosahedron. Figure 2 illustratesraéth

These so-called platonic solids are approximations togherg, but only the icosahedron is very close, and to make
a large structure from it would require very long struts.

Figure 3: Uniform Triangle Subdivision

One way to proceed is simply to subdivide the triangles in ahthe regular platonic solids, and this is how a
geodesic dome is constructed. Any of the three solids coeldded, but as we shall see, there are some serious
problems if this is done beginning with a tetrahedron, asd-&erious problems (but problems, nonetheless) if we
begin with an octahedron.

We'll begin by describing the standard construction of demievarious complexity beginning with an icosahedron.

It is easy to subdivide an equilateral triangle into 4, 9, d&6any perfect square number of sub-triangles, as is
illustrated in Figure 3.

But if we simply subdivide the triangles of an icosahedrdthaugh the vertices of the original icosahedron will
lie on the surface of a sphere, the vertices that we need ttoasithdivide the triangles will lie in the planes of those
triangles and will be physically inside the sphere. Thig ebsubdivision will also tend to be a lot weaker structurall
since to maintain perfectly flat surfaces, the strength&efidints would have to be infinite (see the “found” poetry
from a physics text, below).



Hence no force, however great,
can stretch a cord, however fine,
into a horizontal line

which is accurately straight...

—William Whewell, Elementary Treatise on Mechanics (1819)

Figure 4: 3V, 4V and 5V Domes

Our solution will be simply to “push” those points out to theface of the sphere from the center, but to do that we’'ll
need to be able to work with three-dimensional vectors amddinate systems. First, we’ll look at some of the tools
that are needed to work with three-dimensional vectors laad we’ll begin by looking closely at the icosahedron.
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Figure 5: 3V and 5V Domes: Small Versions

The names, “3V”, “4V” and “5V" refer to the number of subdiidss that are made to the original triangles in the
icosahedron before they are pushed out to the surface opttezes In Figure 1 you can also see a 6V dome. Notice
that the domes of odd degree, the 3V and the 5V domes arelgligider than a half sphere. That's because when
there are an odd number of triangles in the subdivisionetigeeno center line or “equator” at which to divide it, so we
have to pick a version that is a little larger or a little sraathan a half sphere. In the examples in Figure 4, the larger
versions were displayed. In Figure 5 appear the smallefores®f the 3V and 5V domes.
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Figure 6: Dome Spheres:
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You may find it useful to see images of the original spheresifrchich all of the dome models above were cut.
Those appear in Figure 6. It's clear from these images traéthand 6V spheres have an equator and the others
do not. If every vertex of the 3V sphere represents a carbam,athen the sphere represents the molecule called
“Buckminsterfullerine” which really exists, and has sonegywuseful chemical and physical properties.

Figure 7: The 2V Dome and Sphere

All the domes displayed in Figures 5 and 4 are fairly compéiddo build; the easiest that can reasonably be called
a geodesic dome is the 2V version. Figure 7 displays the 2Ved@nhalf-sphere) and the corresponding 2V sphere.

It's obvious if you think about it, but if you look closely até¢ spheres in Figure 6, you can see that almost all the
vertices on larger domes have six struts that meet at eaelvehy case, there are exactly 12 of the 5-strut vertices (on
the entire sphere). This is, of course, the number of 5-g&uiices there are in the original icosahedron.

4 Vector Tools

We are going to do all of our work in a three-dimensional camate system. This is very similar to the two-
dimensional systems that are introduced in every highalchigebra course with am and ay axis, but we will
add a third, ther axis, which is perpendicular to the other two. If we starthat origin of such a system, we can give
directions to every point in space by giving three numbehs: distance to travel parallel to each of the axes (with
negative distances meaning to move in the opposite dirgctio

One tool we will need is a method to find the distance betweenp®ints, but this can be obtained as a simple
extension of the Pythagorean theorem. If the two points leaeedinates?y, = (o, yo, 20) and Py = (x1, 41, 21),
then the distanc® between them is given by the formula:

D(Py, Py) = \/(z0 — 21)? + (yo — y1)* + (20 — 21)>.

Of course if one of the points is the origin, this reduces to:

D(0, Ry) = /23 + y3 + 23.

Notice also that if you have the coordinates that describekaect then you can uniformly scale the object by
multiplying all the coordinates by a constant. So if you h#necoordinates for a geodesic dome with diameter 1 foot
and you want to build a dome with diameter 20 feet, you cantala all the coordinates for your 1 foot dome and
multiply them by 20 to obtain coordinates for the new one. iBirly, all the strut lengths will be 20 times as long, et
cetera.

For this reason, we will work in coordinates that are easyst and if we ever desire to build a real dome, all we
need to do is find the appropriate factor once and multiplgfathe numbers by that.



5 Thelcosahedron

An icosahedron is a regular polyhedron with 20 sides, eashhich is an equilateral triangle, and at each vertex, 5
triangles meet (see Figure 8). If you view an icosahedroh waiite vertex on top and another at the bottom, you can
see that there are two rings of five vertices each, makingah #6tL2. There are 20 triangles, since 5 touch the top
vertex, 5 touch the bottom and there are 10 in the band ardwencknter.

It's also easy to count edges: there are 30. This is becayse ifut the entire figure into triangles, each of the 20
triangles would have 3 edges making 60 (after cutting), themassembled, every pair of adjacent triangles shares an
edge so the uncut version would contain half that many, or 30.

Figure 8: Icosahedron

Let ¢ = (14 +/5)/2 ~ 1.61803398875 be the golden ratio. Then the following 12 poiMsB, ..., L are the
three-dimensional coordinates of a regular icosahedroteced at the origin:
A=(0,1,¢) B=(0,-1,¢) C=(0,-1,—¢) D=(0,1,—¢)
E=(¢,0,1) F=(-¢,0,1) G=(-¢,0,—-1) H=(¢,0,—1)
I:(15¢a0) J:(_15¢50) K:(_17_¢50) L= (17_¢50)
See Section 10 for a nice model that shows how these cooedinéate.
Here are the 20 triangles connecting the vertices abovertake up the surface of the icosahedron:
AlJ AJF AFB ABE AFEI
BFK BKL BLE CDH CHL
CLK CKG CGD DGJ DJI
DIH FELH FHI FJG FGK
Finally, here are the 30 edges of those triangles:
AB AE AF Al AJ BE BF BK BL CD
cG CH CK CL DG DH DI DJ FEH FEI
FL FG FJ FK GJ GK HI HL IJ KL
It is a bit tedious to check, but the length of all 30 of the segts in the list above is 2. For example, the length of
AB is given by:

|AB] = (0= 02+ (1 - (1)) + (¢ —¢)> = Vi=2.
Another typical calculation yields the length of the segiméh':

[AE] = (0-¢)2+(1—-02+(p—1)?
\/1+2;/5+5+1+1—2\4/5+5
= V12/4+1=Vi=2.

Notice that all the vertices of our icosahedron lie on théasig of a sphere centered at the origin. That's obvious
because in every case, the coordinates, in some order, Baag and ag, the last two possibly preceded by a negative



sign. But to calculate the distance from the origin to thabhpave just square all three numbers (which will eliminate
any influence from any negative numbers) add the three tegégrelding the same sum in every case) and take the
square root of the result.

For the particular coordinates that we've chosen, the sagfithe sphere in which the icosahedron is inscribed turns
out to be about.90211303 units. This isn’'t a particularly nice number, but it's woithio have particularly nice and
relatively uniform coordinates for all the vertices.

Figure 9: The Golden Ratio

A nice way to visualize the vertices of an icosahedron is thay lie on the corners of three rectangles that are
centerd at the origin, have aspect ratiod ofp, and are all perpendicular to each other. To see that thetagi® is
1: ¢, see Figure 9.

In that figure, all the angles of the regular pentagdBC DE are108°. The line AB forms an isosceles triangle,
AABC, whose base angles must3®. If we then bisect AC D with CF, it's easy to calculate the other angles in
the figure are as marked.

But nowAACD ~ ACDF,soAC/CD = CD/DF. Ifthe side length of the regular pentagon iand the length
of the unknown diagonal i5, we obtain:L/1 = 1/(L—1), which is easily solved fof yielding L = ¢ = (1+/5)/2.

6 Strut Lengths

If we consider the 2V dome, each of the equivalent equilateiengles from the icosahedron is subdivided into 4
triangles and then the inner three vertices are pushed dhetsurface of the inscribing sphere. Each of the original
sides of each triangle will become two equal pieces on thiasaiof the 2V dome, and three additional pieces are
added to form the inner triangle. The three struts that mak#he inner triangle are of equal length, as are the six
struts that were made by subdivision and pushing out of tlggnal edges of the icosahedron. It's easy to verify by
calculation that the two lengths are different, but thabéthe struts in the final dome or sphere are one of those two
lengths.

A similar, but slightly more complex analysis shows us tinathie 3V dome, exactly three different strut lengths are
required.

Thus if you're making a 2V dome, there are only two differeénislengths required—for the dome, not the sphere,
exactly 30 of the shorter length and 35 of the longer lengttraquired. Since the dome can be arbitrarily scaled, it's
possible to find the optimal lengths for the two struts, gitreat you can purchase the raw material in fixed lengths.

A standard construction material for domes is steel ekmitdonduit that comes in 10-foot lengths in the United
States. If you'd like to purchase the minimum number of therstyet make a dome of maximal size, you simply need
to cut each length into two pieces that are in the proper.ratibh 35 10-foot pieces, you can make the 35 long and



30 short struts and have 5 extra short struts at the end.p(tilsably a good idea to get a few more than 35, in case
there’s a manufacturing error, and so that you will have astl@ couple of spares of the longer length.) If holes are
drilled in the ends of the struts, the problem of optimizati®only a tiny bit more complicated.

So let's see how to calculate the strut lengths, beginnirg thie 2V dome. We’'ll consider the original triangle
AIJ of the icosahedron listed in the previous section. The apprate coordinates ofl, 7 andJ are(0, 1,1.618),
(1,1.618,0) and(—1,1.618, 0), respectively.

There are many ways to proceed, but one approach is this. Y& parlier that the radius of the sphere in which
the icosahedron is centered\j§1 + ¢2) = 1.902. Thus if we divide all the coordinates ly902 we will have all the
vertices on the surface of a sphere of radiugJsing the same names for the vertices, this will give us dlewing
sets of coordinatesd = (0, .5257,.8507), I = (.5257,.8507,0) and.J = (—.5257,.8507,0).

The lengths of segments!, IJ and.J A are all equal to:

/(52572 + (.8507 — 5257)2 + .85072) ~ 1.0515.

To find the midpoint of segment/, we need to find the average coordinates of verticesd!: (.5257/2, (.5257+
.8507)/2,.8507/2) = (.2628,.6882,.4254). A similar computation gives the midpoint dfand.J as (0, .8507, 0).
Both of these vectors have the same length, nan®ly7, so to push them to the surface of the sphere, we need to
divide all the coordinates by507, yielding M = (.3089,.8090, .5) andN = (0, 1,0), respectively, wherd/ and N
are the locations of the midpoints of the segments afterltlagg been pushed out to the surface of the sphere.

The two strut lengths required to make a dome or sphere aisddare thus equal to the lengths4f/ and M N,
which we calculate to bg:AM| = .5465 and| M N| = .6180.

Suppose we wish to construct an optimal 2V dome, using 10gimaes of electrical conduit, where we plan to
flatten the ends and to drill holes one inch in from each enttémlathe struts together. Basically, there are 4 “wasted”
inches because we will need four holes after cutting thesstiithus the original piece of conduit is effectively only 9
feet 8 inches, or 9.6666 inches long. This has to be dividedratio of| AM|/|M N|, so the pieces will have lengths
4.536 feet and 5.130 feet.

Similar calculations can be made for any dome. With the kiadrpssion of Tara Landry who constructed and
maintainsiww . desertdomes . dom, we include the strut length information for subdivisions 1V through 6V domes.
Figure 10 shows the different lengths required for eactdpidar subdivision, and the associated tables display the
ratios of the various lengths, assuming you want to build meevith radius 1.0. In Figure 10, the struts are only
labeled in the horizontal direction. The labels can be eaté obtain the lengths in the two other directions.

In addition, the number of struts of each of the lengths apevsito make a dome (or, in the case of an odd-V dome,
both the smaller and the larger version) or a sphere. For pbegiifiyou want to make the larger 5V dome of radius
1.0, you will need 30 of the “A” struts having length 0.198280801, 60 of the “B” struts, et cetera.

[ Strut | Length | D1 | D2 | Sphere] | SZUt| 0542222?5782; Dgg’le| Sr:;)ere|
| A | 1.05146222424| 10 | 25 | 30 | B 0.618033988750| 35 60
[ Strut | Length | Dome [ Sphere]
| Strut | Length | D1 | D2 | Sphere| A 0.253184595784| 30 60
A | 0348615488820 30 | 30 | 60 D | poaaseesel S |
B 0.403548212335| 40 55 90 D 0'298588133655 30 60
C 0.412411489310, 50 | 80 120 E 0.312868930080 70 120
F 0.324919696233 30 60




Figure 10: Strut Subdivision Lengths

[ Strut | Length | D1 | D2 | Sphere] [ Strut | Length | Dome [ Sphere]
A~ ] 0.198147430801 30 | 30 60 A ] 0.162567228883 30 60
B | 0.225685786566| 60 | 60 | 120 B | 0.181908254598 60 120
C | 0.231597595641 30 | 30 60 C | 0.187383400570| 30 60
D | 0.231790251268 30 | 30 60 D | 0.190476861168 30 60
E | 0.245085783201 50 | 80 | 120 E | 0.198012574234 60 120
F | 0.245346420565 10 | 20 30 F | 0.202819695856 90 180
G | 0.247242909849 60 | 70 | 120 G | 0.205907734855 130 240
H | 0.255167012309 50 | 70 | 120 H | 0.215353730111 65 120
[ 0.261598097465/ 30 | 35 60 | 0.216628214422 60 120
If the dome is an even-V form based on the icosahedron, thpamts of the original triangles on the “equator” all

lie exactly on the equator, so any subdivisions of those giahlines will also lie in the plane of the equator. When
those points are pushed out to the surface, they will lie ormathematically perfect plane, and a dome so constructed
will lie perfectly on perfectly flat ground.

For odd-V domes of degree 3 or greater, there are no pointeadhator, so we have to decide whether to go up a
“half rank” or down a “half rank” from the true equator to mater dome. In either case, the points up one rank are
notin a perfect plane, but they are close enough that it oftesmbmatter. As the odd degree gets larger and larger,
the error becomes less and less.

7 How Many Struts Are Required?

Let's consider first the problem of determining the numbestaits required to make a sphere for each different size.

The initial icosahedron is made up of 20 triangular faces 3d@dges. When a single one of the triangles is
subdivided intol, 4,9, 16, ... smaller triangles, the number of internal edges can be sebe from the figures:
0,3,9,18,30,45. This seems to satisfy the formulén? — n)/2, wheren is the number of subdivisions of each side.
The number of edge struts will obviously Be.

We can see that the formulas above are true, since if we wetd tgo the original triangle inta? smaller triangles,
there would bé&n? edges, but each is double-counted except fostheuter edges. The makes a total®h2 —3n) /2
inner edges, matching the formula we obtained from a direehtof the 6 smallest examples.

For the sphere, there are 20 faces and 30 edges of the oiiigisahedron. Each face will generat@? — n)/2



internal struts and each of the 30 edges will 8dd more struts, for a total 030n? struts, and this agrees with the
values in the tables.

For the even-V domes, we can't quite cut this number in haticesthere is the line of struts that lie along the
ground. If we cut the number in half, we will only include half the struts lying along the ground, so we need to
adjust for that.

If nis even, then an-V dome will have5n struts on the ground. Thus the total number of struts reqdoean
n-V dome, where is even, is given by the formul@0n?/2 + 5n/2. This formula is in agreement with the values in
our tables for 2V, 4V and 6V domes.

For the odd-V domes the calculation is not too hard. We makepaer (smaller) odd-V dome by slicing an odd-V
sphere in half, but not on a rank.

In fact the cut will slicelOn struts, so the total number of struts in the smaller odd-V @dsrgiven by(30n? —
10n)/2 which again agrees with the values in the tables.

Finally, for the larger odd-V dome, we need to add to that &ahe struts we slicedtOn of them, plus the new
bottom struts5n of them, for a total ofil5n2 + 10n.

8 Open Problem

If you build an icosahedron-based dome, how many differeat Engths will be required?
This seems to be a difficult question, and | have not been alfiad a nice solution. Using a computer program, |
was able to work out the following data for the first few suligion sizes:

Vv | 2V | 3V | 4V | BV | 6V | 7V | 8V | 9V | 10V
1 2 3 6 9 9 16 | 20 | 18 | 30
11V | 12V | 13V | 14V | 15V | 16V | 17V | 18V | 19V | 20V
36 | 30 | 49 | 56 | 45 | 72 | 81 | 63 | 100 | 110

I cannot find any reference to this sequence, and have seliiitb the online “Encyclopedia of Integer Sequences”
at:
http://www.research.att.com/ "njas/sequences/

9 Tetrahedron and Octahedron-Based Domes

There is no reason that you cannot begin with a tetrahedroctahedron, subdivide the triangles and push the vertices
out to the inscribing sphere, and make successively bgifgoaimations to a sphere.

With a tetrahedron, a major problem will arise if you wish &vh a dome rather than a complete sphere, since the
tetrahedron has no natural “equator” as does the icosah&dren its triangles are divided into an even number of
sub-triangles or as does the octahedron with any type efgigesubdivision.

In a sense, then the octahedron might seem to be a bettedesmtbr geodesic domes than the icosahedron, since
the 1V, 2V, 3V, ...domes based upon it will all have a flat bd$e problem arises from the fact that more subdivisions
are required, and thus more different lengths are requitedthe icosahedron-based domes, the 1V, 2V and 3V domes
require 1, 2 and 3 different strut lengths, respectively.nice to have lots of struts of the same length, since then it
easy to have a small number of spares, in case there is daamabjine manufacturing process would require a smaller
number of jigs.

Finally, although you almost never see them in the real wdfigure 11 shows what 1V through 6V octahedral
domes would look like.

The final illustration in Figure 12 is the geodesic dome uritteyr man” at Burning Man 2004. It was burned, along
with the man, on September 4, 2004.



Figure 12: 4V Dome at Burning Man 2004

10 ZomeModels

To present a lecture on Geodesic domes, it is much easieuihgwe physical models of various structures to help
the class visualize what is going on. The Zome system (fi@m. zometool . com) provides a perfect mechanism
for building such models. In this final section are photos éw of the Zome models the author has used in his
presentations together with brief descriptions of how tiveye used.

The first Zome models, displayed in Figure 13, show both a lsingpsahedron (on the left) and the model on the
right illustrates where the coordinates for the verticearofcosahedron come from. In that figure, the vertices of the
icosahedron are grouped into sets of four, where each setofié on the vertices of a golden rectangle. The three
golden rectangles are mutually perpendicular with a comosarer at the center of the icosahedron. The long struts
in the rectangles (made of black, white, and blue strutsk hemgth2 and the short ones, length All the other
edges of the icosahedron are made of red struts in the modésiaasy to show that they also have length

(The black and red struts are not standard Zome colors, sayitmat be easy to obtain them. It is easy to obtain
Zome balls of any color, however, so at least the verticeb®fridividual golden rectangles can be represented.)

The next photo, Figure 14, shows two versions of a 2V geodfmice made from the zome struts. The one on
the right makes the linkage clear: five of the shorter (yelletuts meeting at six points. The other one is entirely
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Figure 13: Zome Icosahedra

white except that one of the original triangles from the auesdron that was split into four sub-triangles is illustcht
in color. You can hold the two domes together to show how theyld/form the complete expanded icosahedron.

Figure 14: Zome Domes

Figure 15 shows on the left a small that can be used to illigsthee Pythagorean theorem in three dimensions. The
two-dimensional version allows you to calculate the lengjtthe green strut, and then you can apply it again to find
the length of the strut composed of two yellow struts.

On the right side of Figure 15 is illustrated most of an icesiton whose triangles have been split into nine sub-
triangles in preparation for a 3V dome. Since the middledayé¢hree triangles deep, this model makes it clear that
you cannot cut it exactly in half, and that you need eithettke Imore or a little less than a half-sphere for the final
structure.
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Figure 15: Pythagorean Theorem and 3V Stage

Finally, although it is less useful than the other modelg, basic triangulations of a triangle inth 9 and 16
sub-triangles are illustrated in Figure 16.

Figure 16: Triangulation
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