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Abstract

This exercise can be used for middle school students and dlde original problem seems almost
impossibly difficult, but there are obviously many ways tgegach it by considering simpler prob-
lems. As they investigate it, students are actually ddlliheir multiplication and addition facts. In
addition, depending on how detailed a study you want to migeestudents will be forced to do a lot
of simple algebra to obtain the results they need. They nsylaarn something about commutativity,
associativity, and symmetric functions.

1 Introduction

This document is meant for the teacher. It describes aneistieg problem and then lists a number of
ways the problem can be used in a classroom. Depending omgy¢heral sophistication of the students,
the classroom discussion can be taken in different direstio

As usual, if you are the teacher, you will probably find thisdiment more useful if, before reading our
discussion about classroom presentation, you try to make $adway on the problem yourself. It will

help you to “think like a student” and you may come up with diddial ideas and strategies that did not
occur to the authors.

2 TheProblem

Imagine that all the numbers frointo 100 inclusive are written on the blackboard. At every stage, you
are allowed to erase two numbers that appear on the bodsdc@éitthe numbers you erasedandy) and

in place of the two erased numbers, write the numbery + zy. Repeat this operation until only a single
number remains.

What are the possible values for that remaining number?

3 Classroom Presentation Strategies

Obviously you do not need to list all the numbers froro 100. But write down a few of them, possibly
something like this:
1,2,3,4,5,6,7,8,...,98,99, 100

Also, depending on the sophistication and level of the ¢hamg may not want to give the algebraic form
x + y + zy; just say that the new number is obtained by adding three etgnthe two original numbers
and their product. Do a couple of examples, as follows:



Suppose the two numbers you choose Zaand4, The new number i€ + 4 + 2 x 4 = 14. On the
blackboard, physically erase theand thet and write down the numbéet. Point out that the board now
has two copies of the numbg4, and that there’s nothing wrong with that. The tiwgs could even be
combined at that point, yieldint + 14 + 14 x 14 = 224. At every stage throughout your presentation,
make sure thetudents do the calculations.

Get the students to explain to you why the process must coareéad. (You want them to say something
like “At every stage two numbers are erased and only one nuimbeded, so after each step there is one
fewer number. Since we started with orll90 numbers, aftef9 steps there will remain only a single
number.”) This is a “monotonicity argument”. we can assigpasitive number to a situation (in this
case, simply the number of numbers remaining on the boari¥laow that at each stage this number is
reduced (in this case, by one), and thus the process musiuellgrcome to an end since once we are
down to a single number the process must halt.

Depending on the level of the class, you may need to work oatarrtwo more examples of how the
process works in general. You could show, for example, thatt begin with the numberk 2, 3 and4,

that the process ends after three steps. Not only will thigedrome the fact that all such processes have
to end, but it will remind the students a few more times eyauthw numbers are combined.

If you work with {1,2, 3,4} as your initial set, don’t choose pairs to eliminate in amgightforward
order. For example, first combideand2 to yield 14. Then combind and3 to yield 7. Finally combine
the7 and14 to yield the final result o119.

Ask the students if they have any ideas for how to proceed. tAsh if they can guess what strategies
might lead to a large final number and which strategies miggd ko a small final outcome.

4 How to lnvestigatethe Problem

It's pretty clear that it would be crazy to start work on thd firoblem that specifies that we begin with
100 different values on the blackboard. There ateemendous number of ways that pairs of numbers can
be selected and every one of them might yield a different boédome.

4.1 A Smaller, Smpler Problem

A good strategy in situations like this is to invent a similmaller problem that we can look at. We can
look at problems that are both smaller (fewer thaf initial numbers) or simpler. The word “simpler”
can be a little misleading. Obviously we'd like to try someamples with numbers that are easy to
calculate with. This might mean small numbers, like2, 3, or perhaps look at the situation where all
the initial numbers are the same (shyl and1). What would happen if we allow the numberto be
included?

We can gain some insight into the problem with examinatidkes this, but later on we will also find
that looking at the general algebraic form of the combinipgration will actually be, in some senses,
simpler, since it will show us how exactly how the originahmpers fit into combinations, especially when
we combine more than two of them.

Ask the students to suggest simpler related problems, andnay get suggestions like, “Just list the
numbers froml to 10.” That's a good suggestion, but try to convince them thaneweis a very large



number, perhaps by starting a calculation and seeing how passibilities there are.

Ask them, “What is thesasiest problem?” Starting with one humber is probably the easgiste at that
point, the game is over, and the score is simply whatever enydu started with.

What happens if there are two numbers, $and2? You have no choice but to pick those two numbers,
and the result will bd + 2 + 1 x 2 = 5. Eventually you want to write down the algebraic form for the
combination, but depending on the class, you might want tsndee examples with concrete numbers
first: “What's the result of combining and5? Of combiningl and100? Of 100 and100? Ofz and

y? Be sure that you do eventually get them to state the algebogation for the combination operation:
r+y+xy.

Ask the students to use the formula+ y + xy to figure out what number would replace, saynd5s.
When somebody gives the correct ans@er5 + 3 x 5 = 23, ask them how they did it. They’ll probably
say something like,# = 3 andy = 5, so | just plugged those numbers into the formula.” Ask themw h
they knew that it was the that was3. What if x were theb andy were the3?

Obviously, you get the same answer, but ask the students Wina? is it about the formula + vy + zy
that makes it give the same answer if you swap the valuasarsfdy? The answer, of course, is that if
you put an %" everywhere there’s ay” and a “y” everywhere there’s am!” (in other words, swap: and
y) then the algebraic form is the same. In our simple examplappingx andy would yieldy + = + yx
which is equal tor + y + xy. If our rule for combining two numbersg andy by another had been to
replace them with, sagx + y + xy, then the ordewould matter, so choosing for = and3 for y would

yield a different result than choosigor = and5 for .

Symmetric functions: If there’s interest and the class has a little algebraic sbightion, you can ex-
amine this idea of a “symmetric” function — a function whosputs can be permuted and yet yield the
same value. Here are some symmetric functions. Note thanictibns with more than two variables, the
inputs can be rearranged in any way you want with no chandeetoutput. Mathematically, this can be
stated a¥ (z,y) = f(y, z), or

f(:c,y,z)=f(:c,z,y)=f(y,:v,z)=f(y,z,:v)=f(z,x,y)=f(z,y,x).

There would b&4 equations to illustrate all the equalities required formmetric function oft variables,
and in generalp! equalitites for a function of variables. Check that these are symmetric and try to find
others.

f(x,y) = 2y
flxy) = 2 =3zy+y°
flx,y) = 2°y+y’r+aty—172%>
flz,y,2) = zyz+zy+yz+zx
f@,y,2) = (x—y)(y—2)(z—x)
flr,y,2) = (@+D)(y+1)(z+1)—1
 [GryrAEty-G -yt styra)
f(xvsz) - \/ 16
flz,y,z,w) = 1

Because the replacement function is symmetric, the firstésting case to consider is when we begin
with three numbers, since we can choose any pair to begin ®ithpose the three numbers &r& and



3. Then we can begin witlh and2, with 1 and3, or with 2 and3. After that choice is made the next one
is fixed since only two numbers will remain. Have the studemisk out the answers for each of the three
initial choices, and theghould discover that all yield the same final result; nameBy, It's easy to find
the errors; anyone who gets an answer for any of the exanigésstnot23 has made one!

At this point there is a little evidence that the final ansveandependent of the starting values, but could
that be simply because we chose the simple sequere3? Test that by starting with a different set;
say,3, 7 and8. (Doing this will cause the students to drill their arithiegt In this case, the final results
will again be independent of the order that the numbers ambated, and the final number will always
be287. You can ask the class if there is any way to show that the anisviedependent of the order for
any three starting numbers. You're looking for an answetithalves algebra and variable names for the
three numbers, where the initial numbers are combined fardifit orders.

Now you can start looking at what happens with four initiahmhers,1, 2, 3 and4, but you can impress
upon the students that there arbogof possibilities to be considered. The first choice can beaiad
ways and then there aBeways to make the second choice, for a total ®flifferent ways. Your students
should work out a few examples (all of which should yiélth as the final number), but even now it
should be clear that checking all of them would require a fovork, and for the case of00 starting
numbers, checking all possibilities would be impossibl@n® other approach must be found.

Commutativity and Associativity of Operations

When students are taught about commutativity and assatyati always seems to be in the context of the
operations of addition and multiplication that they knownsall that it may seem to them almost stupid to
have names for these “obvious” properties. (Of course thajode told about non-commutative and non-
associative operations like subtraction and divisionsbuatehow that’s hardly ever done.) The great thing
about this problem is that we have effectively defined a negraton for putting two numbers together
— adding both numbers to their product — that is just anotheark operation that takes two numbers as
input and yields a single number as output. What follows shawvay to lead the students to look at
this new, unusual operation and to try to find its propertf&swill turn out to be both commutative and
associative, and knowing that, we can show symbolically tira final result is completely independent
of the order in which the numbers on the blackboard are coaabjn

When specific calculations (like the ones that use specifinbars) do not shed enough light on the
problem, sometimes it's easier to look at the general cazeeXxample, suppose there are three numbers
on the boarda, b andc. Can we work out the result of doing them in different orddfe? example, first
combinea andb, then combine that result with Then do the same thing, but chodsandc first, then
combine the result with. Here are the results of both of those calculations.

The first step is easy: combiniagandb yieldsa + b 4+ ab. To combine that witle we obtain:

(a+b+ab)+c+ (a+ b+ ab)c 1)
= a-+b+c+ab+ ac+ bc+ abe (2)
It might be clearer to the students if you do this in two stepfotlows. First, give a name, like, to the

quantitya + b + ab, so when you combine with ¢, you first getr + ¢ + z¢, and then if you substitute
a + b + ab for x, you obtain the first line in the pair of equations above.



If b andc are combined first, we obtaint ¢ + bc and then we combine that withto obtain:

(b+c+bc)+a+ (b+c+be)a 3
= a+b+c+ab+ ac+ be+ abe 4)

which is exactly the same result, and a symmetric expressiorb andc as well!

This means that if you have three numbers, the order in whichcpmbine them makes no difference.
The same calculation could be done for four numbers, etadiat again, the calculations start to become
unmanageable. With four numbers it is not totally intratgabnd if you wish to have the students do it,
the result should be the followinigh-term symmetric expression (where the initial list consairb, ¢ and
d):

a+b+c+d+ab+ ac+ ad + be + bd + cd + abe + abd + acd + bed + abed.

A dightly sophisticated symmetry argument. In the calculations above, we calculated the value re-
sulting from combining three numbers in two different osldn fact, a slightly sophisticated symmetry
argument shows us that this is true after only a single caficud. Equation 2 was calculated by combin-
ing firsta andb, and then the result was combined within the next line we recalcuated in a different
order and obtained the same result, but that second cafsulafis unnecessary, in a sence, since the
original result in Equation 2 is symmetric and there is ndedénce in the way that, b andc enter into
that calculation. Since the resulting equation is symrogthiat means that the inputs can be permuted
any way you want, and in this case, the “input” basically #jext the order of combination of initial
numbers. Because of the symmetry, we can do the input inreifferders and obtain the same result, so
the second calculation to obtain Equation 4 was unnecesBhis/argument may be too complicated for
many students, but it is an important idea.

At this point, we can take one more step toward generalitytiibsimplify notation and perhaps improve
comprehension.

In the preceeding, we have repeatedly used expression&bkebinea andd”. In reality, it is just an
arithmetic operation that doesn’t have a common name or sirite will simply invent a new symbol,
“@" that represents our new operation. In the same waydhat uses the symbol+" to indicate the
addition ofa andb, we will use our new symbol&” to indicate our combining operation. Symbolically,
a®b=a+b+ ab. If you consider the calculations we did in equations 2 ansirea, b andc were
arbitrary numbers, we have:

(a®b)dc=(b@c)Da. (5)

We also noted earlier that:
a®b=0ba a. (6)

In other words, theb operator is commutative. Because of this commutativity,caeld rearrange the
terms in equation 5 as follows (which puts it in the usual farsed to express the result that the operation
is associative):

(a®b)Bc=ad (bdc). (7)

Equations 6 and 7 say that our new operatiois both commutative and associative. Since it's commu-
tative and associative, it doesn’t matter in what order ilmipers are selected to be combined; the result
is always the same.



At this point, there are a couple of ways to go, depending erstiphistication of the class. The easy
way is just to note that “Associativity means that you doed parentheses” and “Commutativity means
that you can swap the order of the operands any way you warith thése two ideas, it's clear that any
sequence that combines any number of initial numbers leatieetsame result, and that may be good
enough and you should skip the following section.

4.2 Commutativity and Associativity: Detailed Drill
One problem students have with “general” formulas like:
Ap(BoC)=(AeB)oC
or even simple formulas like the Pythagorean theorem:
A*+ B? =(C?

is that it is hard for them to get the idea that the B, andC' can represergeneral expressions. For
Pythagorean triples, it may be obvious to students that if kwow that legs of a right triangle have
lengthsA = 3 and B = 4 that they can plug those numbers in to obtain a formulafpbut they don't
know how to findC in a triangle where the lengths of the legs are giveras 1 + «? andB = 1 — u?
like this:

C?=(1+u*)? + (1 —u?)? =2+ 2u?,

soC = V2 + 2ut.

To step through the details for rearranging formulas inv@¥he operatior using the primitive formulas
for commutativity and associativity, students will haveuttderstand and apply this idea over and over.

If you are interested in drilling the ideas of commutativétyd associativity, you can go through an ex-
ample with combining, say, five numbers to show that comnuitiabind associativity implies that two
different combining orders yield the same result, as fofiow

Suppose the five initial numbers aieb, ¢, d ande. Your claim is that no matter how the numbers are
combined, the result will be the same as combiningith e, then that number with, then that number
with b, and finally, that number with. Suppose the students say this:

Combineb with d (call thatz). Next combine: with e (call thaty). Now combiney with a (makingz)
and thenz with x (producing the final numbe¥). You probably want to give names to each step as the
students make them up, like this:

= bad
cde
yda
= zdx

2w e o8
I

You can then work backwards to find a mathematical expredsiofN. Begin with the final equation
above, and do one substitution at each step. In the list belaubstitute first fog, then forz, then for



y to obtain each successive line:

= zOuw

2@ (bdd)
(y®a)® (b d)

= ((cove)da)d (bdd)

Make sure the students see that this final equation exprasseg line exactly the operations that they
suggested.

Z =222z
[

Next, we can take the final equation that involves only ougiogl variables and convert it, step by step,
to our “target” form:
N=ad (b (cd (d®e))).

Here are the steps that will do it (see below for the detailgdaanation for each step):

N = ((cee)®a)d (bdd) (8)
N = ( ©(cde))a(bod) 9)
N = ad((che)®(bDd) (10)
N = aa(bad) @ (cpe)) (11)
N = ad(ba(do(cde))) (12)
N = a0 (bd((cde)dd) (13)
N = a0 (bd(c@d(edd))) (14)
N = aa(bd(cd(dde))) (15)

We will see that each equation is derived from the previoursgusnly associativity and commutativity
of the operatiorp. We'll use the following shorthand. If we apply commutatyyive effectively convert
Xa@YtoY @ X. Thiswill be represented as in the second line below, wikestands fow andY stands
for (c @ e). If associativity is involved, we will convert & (B @ C) to (A ® B) @ C (or the reverse).
The easiest one to see is in the seventh line below. Noticgttatgy: we use commutativity to bring the
letters into the ordet, b, ¢, d, e, and associativity to group them the way we want.

Equation 8: The original equation.
Equation 9: CommutativityX = a andY = (¢ ® ¢)

Equation 10: AssociativityA = a, B = (c®e), C = (
Equation 11: CommutativityX = (c®e),Y = (b @ d
Equation 12: AssociativityA =b, B =d, C =
Equation 13: CommutativityX =d,Y = (¢ @
Equation 14: AssociativityA = ¢, B=¢,C =
Equation 15: CommutativityX = d, y =

"Q

5 TheFinal Result

Now that we know that the order in which we combine the origimambers on the board makes no
difference, we can compute a few simple examples by usinglsiarithmetic. It's not too hard to do this



(and the class should) work out values for initial sets cioirig up to six natural number$l}, {1, 2},
{1,2,3},...,{1,2,3,4,5,6}. The following table lists the results they should obtain:

Initial List Final Value
1 1

1,2 5
1,2,3 23
1,2,3,4 119
1,2,3,4,5 719
1,2,3,4,5,6 5039

As you help with the calculations, you can point out a couplthimgs if the students themselves don’t
notice them. First, as you're working on the first two or thygaint out that since the order doesn’t matter,
students can use whatever numbers they want that seem déiid thake for easier calculations. Then,
say after the valu@3 is computed for the third example, point out that rather tsanting from scratch
for the fourth example, note that they've already combihgdland3 and to obtain the next number, they
just need to combine tHE3 already obtained with to obtain:23 +4 + 23 x 4 = 119. Given this idea, the
students may want to calculate a couple of more steps. {ffdbethe answers for initial lists containing
the first7, 8 and9 whole numbers are given bi)319, 362879 and3628799, respectively.) Sophisticated
students may from this information alone be able to guesgéheral formula, which, for the initial list
{1,2,3,...,n}isgivenby(n + 1)! — 1.

Even if you've guessed the formula, it still may be diffic@trite down a convincing argument that it is
correct. One approach is this:

5.1 Wishful Thinking

When we see the formula® y = = + y + xy, we may notice that the form on the right calmost be
factored. If only there were an additioniabn the right, we'd be in business, since

I+2)1l+y)=14+z+y+ay.

Well, just add al! But you can’t do that without changing the value of the esgien, so you'd better
subtract a to make up for it:

r@y=l+z+ytay—1=(1+z)(1+y) -1

As we shall see, this ismmuch better form of the algebraic expression that represents;.

If we use this form and want to calculate® y @ z, let's see what happens. (Note that because of
associativity, we don’t need to worry about parenthesesiirf @” expressions.)

zoydz = (1+2)(1+y)-1) @2
I+(0+2)14+y)—1(1+2) -1
I+z)(1+y)(l+2)—1

Point out where the pairl” and “—1" inside the initial set of parentheses in the second linevalmomes
from — that when we applg to two numbers, we add one to each, multiply them, and sutitrfiaom the



result. One of the numbers($+ x)(1 +y) — 1 and the other is. Adding1 to both giveq1 + z)(1 + y)
and(1 + z), multiplying them giveg1 + z)(1 + y)(1 + =), and subtracting gives the result.

Lead the students through another couple of steps exacilyase to show that:

zdy®z = (1+2)1+y)(l+2) -1
roy®zow = (1+2)14+y)A+2)(1+w)—1
t@y®zowdv = (1+2)1+y)A+2)1+w)(l+v) -1

It would be possible, of course, to write down a formal proghitathematical induction that the general
formula holds, but just doing the operation a few times stioudhke the general pattern clear. The general
pattern is that you adtl to every number in the list, multiply all of those numbersdtiger, and subtract
one from the final result.

Thus the result obtained from an initial list containifig 2, 3, 4,5, 6, 7} is given by:
I4+D)x2+)xB+1)xA+1)x(B+1)x(6+1)x(7+1)-1

which is:
2X3IX4XxHXx6xTx8—1=8-1.

Clearly, the result for an the initial list fromto 100 always yieldsl01! — 1, which, in case anyone wants
to multiply it out, is the followingl60-digit number:

9425947759838359420851623124482936749562312794702543768327
8893534169775993162214765030878615918083469116234900035495
99583369706302603263999999999999999999999999



