Change (Generating Functions) $\mathbf{1}^{1}$

1. Find integers m and n such that $4 m+7 n=1$. Then find another pair of values for m and n such that $4 m+7 n=1$ again.
2. If k is a given positive integer, show that we can always find $4 m+7 n=k$. Then demonstrate that this is still possible if we further require that $0 \leq m \leq 6$.
3. Show that the following recipe works for determining whether or not a given amount k can be changed using 4 -cent and 7-cent coins. Given k, find integers m and n such that $4 m+7 n=k$ and $0 \leq m \leq 6$. Then k can be changed precisely when $n \geq 0$.
4. Use the idea outlined in the previous problem to determine the largest amount that cannot be obtained using only 4 -cent and 7 -cent coins.
5. Let a and b be relatively prime positive integers. Generalize the reasoning developed in the preceding problems to analyze the case of two coins worth a cents and b cents. You may use the fact that the Euclidean algorithm guarantees the existence of integers m and n such that $a m+b n=1$.
6. Suppose k is an integer between 0 and $a b$ that is not a multiple of a or b. Prove that if the amount k can be changed than $a b-k$ cannot be changed, and conversely if k cannot be changed then $a b-k$ can be changed.
7. Prove that there are exactly $\frac{1}{2}(a-1)(b-1)$ amounts that cannot be changed.
8. Prove that if the positive integers a, b, and c have no common factor then there is some largest amount that cannot be changed using coins worth a, b, and c cents. In other words, show that after some point all amounts can be changed. (We are assuming that a, b, and c are not all divisible by some integer $d \geq 2$ However, any two of them might have a common factor, as is the case for $a=6, b=10$, and $c=15$).
[^0]
[^0]: 1 These materials taken from Sam Vandervelde’s Math Circle in a Box, Chapter 12.

