Discrete Calculus

by Raghu Subramanian – for San Jose Math Circle

Motivation

Exercise 1

- It starts snowing at 11am and continues steadily throughout the day. A snowplow starts plowing at noon. It clears 2 miles of road in the first hour. How many miles of road can it clear in the second hour?
- Assume that the rate at which the snowplow clears the snow is constant (i.e., ٠ the greater the height of snow, the slower the snowplow moves)

Exercise 2

- Four dogs are in four corners of a square of side length *l*. Each dog starts running at speed v towards the dog immediately anti-clockwise to it. Even as the dogs change position, each maintains a bearing directly towards its neighboring dog.
- With some imagination, you can see that the dogs will run in a spiral before they all meet ٠ in the center. How much time elapses before the group collision?

Exercise 3

- A percolator prepares coffee at 200°F and pours it into a cup. After 10 minutes, the coffee has cooled down to 150°F. After another 10 minutes, what is the temperature of the coffee?
- Assume that the temperature of the room 70°F, and that the rate at which the ٠ coffee cools is proportional to the temperature difference between the coffee and the room (i.e., the greater the temperature difference, the faster the coffee cools)

Exercise 4

- You probably know that the volume of a cylinder is $\pi r^2 h$. This may be understood intuitively by imagining the cylinder to be a stack of coins, where each coin has area πr^2 and the entire stack has height h.
- How would you figure out the volume of a cylinder that has been sliced with two plane cuts, as shown in the adjoining figure?

Theory

Discrete-domain function

We are familiar with functions f(x) where x is real. A **discrete-domain function** is similar except that x is an integer.

Only the domain is discrete, not the range. I.e., the value assumed by f(x) is not constrained to be an integer.

Example: $f(x) = \frac{3^x - \sqrt{5}}{2}$, where $x \in \{... - 3, -2, -1, 0, 1, 2, 3 ...\}$

Just to remind ourselves of the fact that x is an integer, we will henceforth the notation f[x] instead of f(x). (This is just a mnemonic: there no deep mathematical idea here.)

Discrete Integral

We are given a discrete-domain function f[x], a starting value for x (call it integer a), and an stopping value for x (call it integer b).

We are interested in computing the sum $f[a] + f[a + 1] + \dots + f[b - 2] + f[b - 1]$

This sum is called "the **discrete integral** of the function f from a to b", and denoted by $\int_a^b f[x]$

Example:

• Suppose f[x] = 2x - 1, and the starting & stopping values are a = 10 & b = 15. Then

$$\int_{10}^{15} f[x]$$

= $f[10] + f[11] + f[12] + f[13] + f[14]$
= $(2.10 - 1) + (2.11 - 1) + (2.12 - 1) + (2.13 - 1) + (2.14 - 1)$
= $19 + 21 + 23 + 25 + 27$
= 115

Significance:

- Computing integrals is a problem that pops up again and again and again (and again!) in all sorts of disciplines:
 - o physics, chemistry and modern approaches to biology
 - in every flavor of engineering
 - in all kinds of applied fields like biotechnology, prosthetics, medical instrumentation, geomatics, oceanography, forestry, mining, scuba diving, NASCAR racing ...

- Given how commonly one has to compute integrals, it would be nice to have some general approach to it. This is where derivatives fit in (see next section).
- PS: The act of computing the integral is called **integration**. "Integral" is the noun, "integration" is the verb.

Discrete Derivative

We are given a discrete-domain function f[x].

We are interested in computing a new discrete-domain function, which at each x, assumes the value f[x + 1] - f[x]

This new function is called "the **discrete derivative** of function f", and denoted by $\Delta f[x]$

Example:

• Suppose $f[x] = x^2$. Then, at each x,

$$\Delta f[x] = f[x + 1] - f[x] = (x + 1)^2 - x^2 = x^2 + 2x + 1 - x^2 = 2x + 1$$

Significance:

- The single biggest reason to gain expertise in derivatives is to help us compute integrals (see next section).
- Loose analogy: the single biggest to gain expertise in musical scales is to help us play songs.
- PS: The act of computing the derivative is called differentiation. "Derivative" is the noun, "differentiation" is the verb.

Some basic derivatives to memorize:

Basic $f[x]$	Corresponding $\Delta f[x]$
1	0
x	1
$x^{2\downarrow}$	2 <i>x</i>
x ^{3↓}	$3x^{2\downarrow}$
$x^{4\downarrow}$	$4x^{3\downarrow}$
x ^{m↓}	$mx^{(m-1)\downarrow}$
2x	2 <i>x</i>
3 ^x	2.3 ^x
4 ^x	3.4 ^x
k^{x}	$(k-1).k^x$

Some important properties of derivatives

Scaling a function by a constant	Suppose $g[x] = c.f[x]$
	Then $\Delta g[x] = c.\Delta f[x]$
Sum of functions	Suppose $h[x] = f[x] + g[x]$
	Then $\Delta h[x] = \Delta f[x] + \Delta g[x]$
Product of functions	Suppose $h[x] = f[x] \cdot g[x]$
	Then $\Delta h[x] = f[x+1] \cdot \Delta g[x] + g[x] \cdot \Delta f[x]$

Fundamental Theorem of Discrete Calculus

The fundamental theorem of calculus tells us how we can use our expertise with discrete derivatives to help us compute discrete integrals

Problem set-up:

You are given a discrete-domain function f[x] and starting & stopping values a & b; and you are asked to compute the discrete integral \$\int_a^b f[x]\$

Solution approach:

- Guess another discrete-domain function F[x] whose derivative $\Delta F[x]$ happens to be exactly the given function f[x]. There is no bullet-proof method to find F[x]: sometimes you just have to guess and check repeatedly.
- Assuming you can find such an F[x], then you are home free: simply compute F[b] F[a], and offer it as the answer to the given problem $\int_a^b f[x]$

Surprising as it sounds, the above solution approach works. This is the whole point of the **Fundamental Theorem** of **Calculus**, which says:

If
$$f[x] = \Delta F[x]$$
, then $\int_a^b f[x] = F[b] - F[a]$

The proof is quite straightforward:

$$\begin{aligned} &\int_{a}^{b} f[x] \\ &= f[a] + f[a+1] + \dots + f[b-2] + f[b-1] \\ &= \Delta F[a] + \Delta F[a+1] + \dots + \Delta F[b-2] + \Delta F[b-1] \\ &= (F[a+1] - F[a]) + (F[a+2] - F[a+1]) + \dots + (F[b-1] - F[b-2]) + (F[b] - F[b-1]) \\ &= F[b] - F[a] // \text{ because everything else cancels out - in a way that reminds us of a collapsing telescope!} \end{aligned}$$