
GENERATING FUNCTIONS AND RANDOM WALKS

SIMON RUBINSTEIN-SALZEDO

1. An illustrative example

Before we start studying generating functions properly, let us look an example of their
use. Consider the numbers an, defined by the recurrence relation

an+1 = 2an + 1, a0 = 0.

We would like a general formula for an. We might try working out a few terms to see if we
can detect a pattern:

a0 = 0, a1 = 1, a2 = 3, a3 = 7, a4 = 15, a5 = 31.

If we’re lucky, we notice that it looks like an = 2n−1. Then, we can try to prove this formula
with induction.

But that only worked because we got lucky and happened to notice and guess the pattern.
How could we figure out a general formula without any guesswork?

Let’s solve the above example, without any guesswork. What we will do is to set up an
object that carries all the information about the recurrence, in an easy-to-use format. To do
this, let us define an object

A(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · · .

We want to use the recurrence relation in order to learn more about A(x). So, let us take
the relation

an+1 = 2an + 1,

multiply by xn to get
an+1x

n = 2anx
n + xn,

and then sum from n = 0 to ∞:
∞∑
n=0

an+1x
n = 2

∞∑
n=0

anx
n +

∞∑
n=0

xn.

Some of the terms in this sum are familiar objects: the first term on the right side is 2A(x),
and the second term is a geometric series, which sums to 1

1−x .1 But what about the left side?

Date: 20110.11.09.
1In case you’re worried about convergence, don’t be. When we use generating functions, we like to trouble

ourselves as little as possible with issues of convergence. This will only be an issue if we ever try to plug
something in for x. Sometimes we will do that, and then we will need to be careful, but for now it will not
be necessary.
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We can express that in terms of A(x) as well, as A(x)−a0
x

. Since a0 = 0, this means that the

left side is A(x)
x

. Thus, we have

A(x)

x
= 2A(x) +

1

1− x
.

We can now solve for A(x) to get

A(x) =
x

(1− x)(1− 2x)
.

Now, we’ve figured out what A(x) is. How do we recover the an’s in a useful form? The
usual thing to do at this point is to use partial fractions, i.e., to try to write

A(x) =
c

1− x
+

d

1− 2x
,

for some constants c and d. There are many ways to find c and d, but one of the easiest is
to take the above equation and clear denominators, to get

(1) x = c(1− 2x) + d(1− x)

and plug in nice values for x like 1 and 1
2
, so that we get c = −1 and d = 1, so that

A(x) =
1

1− 2x
− 1

1− x
.2

Finally, we have expressed A(x) as a sum of two terms, each of which is the sum of a
geometric series. So, we unsum them to get

A(x) =
∞∑
n=0

2nxn −
∞∑
n=0

xn =
∞∑
n=0

(2n − 1)xn =
∞∑
n=0

anx
n.

Equating coefficients of the xn terms,3 we find that an = 2n − 1.

2. Generating functions

The power series A(x) =
∑∞

n=0 anx
n that we used above is called the generating function

for the sequence (an). As we saw above, they are really useful for solving problems involving
recurrences. For example, by slightly modifying the above approach, we can prove Binet’s
formula for Fibonacci numbers:

(2) Fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.

(It’s a little bit annoying, since we have to do partial fractions with terms that have
√

5’s in
them, but a slightly uglier computation is the main extra difficulty we encounter. I wouldn’t
want to do it on the board with people watching me.)

2I hear you complaining that I promised not to plug things in for x since we cavalierly disregarded
convergence issues earlier, and then I did so anyway. If this bothers you, feel free to solve for c and d by
equating constant and linear terms in equation (1).

3We can do this, since two such power series are equal if and only if all their coefficients are equal.
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However, some recurrences have a more complicated form than the linear recurrences defin-
ing an above or the Fibonacci numbers. Many of these come from sequences of combinatorial
interest.

Example. The nth Catalan number Cn is the number of paths from (0, 0) to (2n, 0)
consisting of n steps of the form (1, 1) and n steps of the form (1,−1) that never pass below
the x-axis.4 Such paths are called Dyck paths. Here are all the Dyck paths with n = 3:

The first few Catalan numbers are

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42.

The Catalan numbers have a nice recurrence relation:

Theorem 1. The Catalan numbers satisfy the recurrence relation

Cn+1 = C0Cn + C1Cn−1 + · · ·+ Cn−1C1 + CnC0 =
n∑
i=0

CiCn−i.

Based on this recurrence, we can compute the generating function C(x) =
∑∞

n=0Cnx
n for

the Catalan numbers. But before we do that, we should investigate what happens when we
add and multiply generating functions:

Theorem 2. Let A(x) =
∑∞

n=0 anx
n and B(x) =

∑∞
n=0 bnx

n be two generating functions.
Then

A(x) +B(x) =
∞∑
n=0

(an + bn)xn,

A(x)B(x) =
∞∑
n=0

(
n∑
k=0

akbn−k

)
xn.

Let us now work out the generating function for the Catalan numbers, based on the
recurrence relation: doing the usual trick of multiplying by xn and summing over n gives

∞∑
n=0

Cn+1x
n =

∞∑
n=0

(
n∑
k=0

CkCn−k

)
xn.

4This is very far from the only way of defining the Catalan numbers. Richard Stanley, in his book
Enumerative Combinatorics, Volume 2, gives 66 interpretations of the Catalan numbers in his (in)famous
Exercise 6.19. He now lists several hundreds more on his website, at http://www-math.mit.edu/~rstan/

ec/catadd.pdf, and also in his new book, simply titled Catalan Numbers.
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The left side is C(x)−1
x

, and the right side is C(x)2. Hence we have

C(x)− 1

x
= C(x)2.

Solving for C(x) using the quadratic formula gives

C(x) =
1±
√

1− 4x

2x
.

Ah, but we’re not quite done, because we don’t know whether it’s the positive or negative
root. But we can figure this out, in one of two ways:

(1) The honest way: We can do this by computing some terms and seeing which one
is right. Using the positive root and applying the binomial theorem, we would get
C(x) = 1

x
− 1 − x − 2x2 + · · · , so we would have C−1 = 1, C0 = −1, and so

forth. But this is wrong. If we instead try the negative root, we would get C(x) =
1 + x+ 2x2 + 5x3 + · · · , which is right. Hence we have

C(x) =
1−
√

1− 4x

2x
.

(2) Cheating: If we plug x = 0 into C(x), we should get

C(0) =
∞∑
n=0

Cn0n = C0 = 1.

So, let’s try it. If we try it with the positive root, we get C(0) = 2
0
, which is disastrous.

On the other hand, if we try it with the negative root, we get C(0) = 0
0
. Much better!

Generating functions are very powerful when tackling combinatorial problems. Indeed,
there is an enormous amount to be said about generating functions and combinatorics, but
I won’t say it here, because I’d like to move on to random walks and probability. (See the
list of references at the end.)

3. Random walks

George Pólya was the first person to study random walks. He became interested in them
when he repeatedly ran into the same couple while taking his afternoon walks, despite
choosing different routes. Embarrassed that this coincidence might be construed as snooping,
he wondered whether this would happen by chance, and the subject of random walks was
born.

Let us set up the problem. A random walker starts at the origin in Rd. At every second,
the walker moves one unit in a direction parallel to one of the coordinate axes. (So, the
walker takes a step of the form (0, 0, . . . , 0,±1, 0, . . . , 0), each with equal probability.) Since
there are 2d possible steps, each one occurs with probability 1

2d
.

The problem is to determine the probability that the walker eventually returns to the
origin.

It will not be easy to treat all dimensions at once, so we shall begin with a 1-dimensional
random walk. Here, the walker moves one step to the right with probability 1/2, and one
step to the left with probability 1/2. Let us define pn as the probability that the walker is
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at the origin after time n, and let fn be the probability that the walker has returned to the
origin for the first time at time n. Note that, if n is odd, then pn = fn = 0.

There are two ways of proceeding.
First method: Let’s work out what f2n is. In order for the walker to have returned to the

origin for the first time at time 2n, the walker must have stayed entirely positive or entirely
negative before that. Let us assume that the walker stayed entirely in the positives. In order
for this to happen, the walker must have made one positive step at the beginning, then done
a Dyck path of length 2n− 2, then taken one negative step at the end. The number of ways
for this to happen is Cn−1, and there are 22n possible paths in total. Hence, the probability
that this happens is Cn−1

22n
. But since the walker could have stayed entirely negative as well,

we have to multiply this number by 2. So, the probability that the walker returns for the
first time at time 2n is f2n = Cn−1

22n−1 .
What is the probability that the walker ever returns to the origin? Well, in any walk

that eventually returns to the origin, there must be some first return, so the probability of
a return is simply the sum of the fn’s:

∑∞
n=1 f2n. In terms of the Catalan numbers, this is

∞∑
n=1

Cn−1
22n−1 =

∞∑
n=0

Cn
22n+1

.

From the generating function for the Catalan numbers, we can work this out as a number,
since it’s almost what we get when we plug in x = 1

4
in C(x):

C(1/4) =
∞∑
n=0

Cn
4n
.

Hence the desired probability is 1
2
C(1/4) = 1. Thus we have proved:

Theorem 3. In a one-dimensional random walk, the walker returns to the origin with prob-
ability 1.

Second method: This method involves meshing the f ’s and the p’s better. To do this,
we find a recurrence relation involving the f ’s and p’s: if we’re at the origin after 2n steps,
then we must have had a first return to the origin at 2k steps, for some k ≤ n, and then
made a path that goes back to the origin in 2n− 2k steps. Hence, we have

p2n = f0p2n + f2p2n−2 + · · ·+ f2n−2p2 + f2np0,

when n ≥ 1. (When n = 0, this relation doesn’t work, because there is no first return.) Let
us set F (x) =

∑∞
n=0 f2nx

n and P (x) =
∑∞

n=0 p2nx
n. We can find a relation between F and

P by using the recurrence: multiply by xn and sum over n ≥ 1 to get

∞∑
n=1

p2nx
n =

∞∑
n=1

(
n∑
k=0

f2kp2n−2k

)
xn.

The left side is P (x) − p0 = P (x) − 1, and the right side is F (x)P (x) − f0p0 = F (x)P (x)
(since f0 = 0). Thus we have

P (x)− 1 = F (x)P (x),
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or

F (x) = 1− 1

P (x)
.

Now, we compute P (x). To compute p2n, we note that, in order to be back at the origin
after 2n steps, we must have taken n positive steps and n negative steps, and these can be
arranged in any order. Each possible sequence of n positive and n negative steps occurs with
probability 1/4n, so

p2n =
1

4n

(
2n

n

)
.

Hence

P (x) =
∞∑
n=0

(
2n

n

)(x
4

)n
.

By the binomial theorem and some manipulations, we find that this is equal to 1√
1−x . Hence

F (x) = 1−
√

1− x,

so F (1) = 1, once again.
So, we have now shown that with probability 1, the walker returns home. But how long

does it take, on average?
Let us determine how to work out the average value of a random variable. It is easiest to

understand what this means by first doing an example: the average value of a die roll. The
average value of a die roll is 7

2
= 1

6
(1 + 2 + 3 + 4 + 5 + 6). There is a probability of 1/6 of

each result, so we multiply the result by the probability and sum over all the possibilities.
Hence, in this case, the average time it takes to get back to the origin for the first time is

∞∑
n=1

2nf2n.

There is a standard trick to evaluate such sums: take a derivative! If A(x) =
∑∞

n=0 anx
n,

then A′(x) =
∑∞

n=0 nanx
n−1. In particular, if we have a random variable that takes on only

nonnegative integer values, with an being the probability of getting n (so that in particular∑∞
n=0 an = 1), then the expected or mean value of the random variable is A′(1).
In our case,

F ′(x) =
∞∑
n=0

nf2nx
n−1.

Hence, the average time to the first return home is 2F ′(1), with the 2 coming because we
multiplied f2n by xn rather than x2n. We can compute this directly, since F (x) = 1−

√
1− x;

we get F ′(x) = 1
2
√
1−x , so it looks like 2F ′(1) is infinite. This means that, even though the

walker returns in finite time with probability 1, the average amount of time it takes is infinite!
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4. Higher-dimensional random walks

Now that we’ve taken care of the one-dimensional random walk, let’s move on to higher
dimensions. There are surprises waiting for us here!

Let’s do the 2-dimensional case. Here, there are four possible steps: (1, 0), (−1, 0), (0, 1),

and (0,−1). We define f
(2)
2n and p

(2)
2n to be the probability of a first return or return (respec-

tively) to the origin at time 2n.

We will compute f
(2)
2n and p

(2)
2n by following Method 2 in the one-dimensional case. We

start by computing p
(2)
2n . In order to return to the origin after 2n steps, we must take k steps

right, k steps left, n − k steps up, and n − k steps down, for some k with 0 ≤ k ≤ n. The
probability of taking k steps right, k steps left, n− k steps up, and n− k steps down is

1

42n

(2n)!

k!2(n− k)!2
=

1

42n

(2n)!n!2

n!2k!2(n− k)!2
=

1

42n

(
2n

n

)(
n

k

)2

.

Thus

p
(2)
2n =

n∑
k=0

1

42n

(
2n

n

)(
n

k

)2

=
1

42n

(
2n

n

)2

,

where the last equality follows from problem 9.
Now, the recurrence relating the f ’s and the p’s still holds, so if we let F (2) be the generating

function for the f ’s, and P (2) the generating function for the p’s, we have once again

F (2)(x) = 1− 1

P (2)(x)
.

This time it won’t be so easy to evaluate P (2)(x) exactly, so we’ll have to resort to an
approximation. But what we care about is whether we will necessarily return. That is, is
F (2)(1) = 1? This will happen if and only if P (2)(1) is infinite. So, let us try to work that
out. We do that by applying Stirling’s formula (problem 11), which says that

n! ≈
√

2πnnne−n.

We can use this to approximate
(
2n
n

)
= (2n)!

n!2
as well: we get(

2n

n

)
≈ 22n

√
πn

.

Hence,

p
(2)
2n ≈

1

42n

(22n)2

πn
=

1

πn
.

Now,

P
(2)
2n (1) =

∞∑
n=0

p
(2)
2n ≈

∞∑
n=1

1

πn
,

which diverges. Hence P
(2)
2n (1) also diverges, so F

(2)
(2n)(1) = 1, so again, the walker always

returns to home.
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We might now be ready to conjecture that the walker always returns home. But there is
an important rule in conjecture-making: whenever you’re about to make a conjecture, try
one more case.5 So, let’s do the 3-dimensional case.

The setup in three dimensions is very similar. We now compute p
(3)
2n , and we find it to be

p
(3)
2n =

1

62n

∑
j,k

(2n)!

j!2k!2(n− j − k)!2
=

1

22n

(
2n

n

)∑
j,k

(
1

3n
n!

j!k!(n− j − k)!

)2

.

This is hard to evaluate exactly, but we can bound it: the term in parentheses is maximized
when j, k, n−j−k are all around n/3, so we can replace all the terms with what we get when
we plug in n/3 for j and k. (And it’s no particular harm to assume that n is divisible by 3,
but we won’t be that careful, since we’re just going to use Stirling’s formula anyway.) When
we do this, we find that the largest value M of n!

j!k!(n−j−k)! is roughly c
n
, for some constant c.

We now bound p
(3)
2n :

p
(3)
2n ≤

1

22n

(
2n

n

)∑
j,k

(
M

3n
n!

j!k!(n− j − k)!

)
=

1

22n

(
2n

n

)
M

3n
3n

=
1

22n

(
2n

n

)
M

≈ 1√
πn

M

≈ c√
πn3/2

.

But the sum
∑∞

n=1
c√

πn3/2 converges, and hence so does the smaller sum
∑∞

n=0 p
(3)
2n . Thus∑∞

n=0 f
(3)
2n is strictly less than 1, i.e. the walker does not always return home!

So, surprisingly, we see different behavior in three dimensions from one or two dimensions.
In fact, the two-dimensional case is critical: in two dimensions or fewer, the walker returns
home, whereas in more than two dimensions, the walker does not necessarily return. The
reason for putting the cutoff at 2, rather than at 3, is that if we were to come up with a
sensible definition for a random walk in d dimensions, where d is not necessarily an integer,
the walker would always return if d ≤ 2, but not if d > 2. (Indeed, one can come up with
sensible definitions of this.) The reason for this is that the sum in question that we have to
evaluate is quite close to

∞∑
n=1

1

nd/2
.

5Okay, so I just made that up. But I still think it’s a good rule!



GENERATING FUNCTIONS AND RANDOM WALKS 9

5. References

The best place to get started with generating functions is undoubtedly Herbert Wilf’s
generatingfunctionology, which can be downloaded for free from his website.6 Looking back
at the book after many years (I read it when I was in high school), I can see that, without
even trying, I came up with several of the same examples as he did, presumably because
that book so strongly shaped how I think about generating functions.

A good place to learn about the analytic theory of generating functions (plugging stuff into
them), especially its applications to number theory, is the first chapter of Donald Newman’s
Analytic Number Theory.

The material on random walks can be found in many places, including Charles Grinstead
and Laurie Snell’s Introduction to Probability.

6. Problems

(1) Prove Binet’s formula (equation (2)) for the Fibonacci numbers using generating
functions.

(2) Find a closed formula for the Catalan numbers.
(3) Prove Theorem 1.
(4) Use generating functions to solve the recurrence an+1 = 2an + n.
(5) Let p(n) denote the number of partitions of n, i.e., the number of ways of writing

n as the sum of positive integers, discounting the order of the terms. (For example,
p(5) = 7: the 7 ways are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1.)
(a) Show that

∞∑
n=0

pnx
n =

∞∏
n=1

1

1− xn
.

(b) Show that the number of partitions of n into all odd parts is the same as the
number of partitions of n into distinct parts, using generating functions. (For
example, when n = 5, there are 3 of each. The partitions into odd parts are 5,
3+1+1, 1+1+1+1+1; the partitions into distinct parts are 5, 4+1, 3+2.)

(c) Do part (b) by giving a bijection. Observe that this is substantially harder!
(6) Is it possible to relabel the sides of two dice with positive integer labels so that the

probability of getting any sum from 2 to 12 is the same as that of ordinary dice?
(7) Is it possible to put weights on the sides of two ordinary dice so that the probability

of getting each sum from 2 to 12 is 1
11

?
(8) (Putnam 2003) For a set S of nonnegative integers, let rS(n) denote the number of

ordered pairs (s1, s2) such that s1, s2 ∈ S, s1 6= s2, and s1 + s2 = n. Is it possible to
partition the nonnegative integers into two sets A and B (i.e., so that A ∪ B = N,
and A ∩B = ∅) in such a way that rA(n) = rB(n) for all n?

(9) Show that
n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

6http://www.math.upenn.edu/~wilf/DownldGF.html
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(10) Evaluate the sum
∞∑
n=0

n2

2n
.

(11) (a) Show that nne−n < n! < nn+1e−n.
(b) Harder: Show that n! ≈ C

√
nnne−n, for some constant C.

(c) Even harder: Show that n! ≈
√

2πnnne−n. This is Stirling’s approxima-
tion.

(12) In a one-dimensional random walk, what is the expected number of visits to the origin
by time 2n?

(13) Show that, in a one- or two-dimensional random walk, we eventually land on each
lattice point with probability 1.

(14) Let d be a positive integer. Suppose we have two walkers on the integer lattice Zd,
both starting from the origin, both doing independent random walks.
(a) For which values of d is it the case that two walkers will land on the same vertex

at the same time (after the initial meeting) with probability 1?
(b) For which values of d is it the case that the two walkers will both land on the

same point other than the origin, possibly at different times, with probability 1?
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