Monthly Contest 3 Solutions

Here are the solutions for the third monthly contest of the 2013-2014 school year. The solutions listed below are not the only solutions. I encourage you to explore each problem and see if you can discover other approaches to the problems. Perhaps you may even find a solution more elegant than the ones listed!

Problem 1 Find the sum of all possible units digits for n! where n is a nonnegative integer.

Solution We know that 0! = 1, 1! = 1, 2! = 2, 3! = 6, and 4! = 24. Once $n \ge 5$, we have that the units digit is 0 since all the factorials after that will have a factor of 10 in them. Thus, the only possible units digits are 0, 1, 2, 4, and 6 so our answer is 0 + 1 + 2 + 4 + 6 = 13.

Problem 2 Find the remainder when $2^{2014} + 2014^2$ is divided by 13.

Solution 2014 has a remainder of 12 when divided by 13 so 2014^2 has a remainder of 1. Also, by Fermat's last theorem, we have that $2^{12} \equiv 1 \pmod{13}$. Since 2014 has a remainder of 10 when divided by 12, we have that $2^{2014} \equiv 2^{10} \equiv 10 \pmod{13}$. This shows us that $2^{2014} + 2014^2$ have a remainder of 1 + 10 = 11 when divided by 13.

Problem 3 If a, b, and c are nonnegative numbers, show that $(a + b + c)^3 \ge 27abc$.

Solution From AM-GM, we have that $(a + b + c)^3 \ge (3\sqrt[3]{abc})^3 = 27abc$.

Problem 4 On parallelogram ABCD, point E lies on the midpoint of \overline{AD} . Point F is drawn on \overline{CE} such that \overline{BF} is perpendicular to \overline{CE} . Show that $\triangle ABF$ is isosceles.

Solution We extend \overline{CE} through point E until it hits \overleftrightarrow{AB} . Call this intersection G. Since $\overline{AE} = \frac{1}{2}\overline{AD} = \frac{1}{2}\overline{CB}$ and $\overline{AD} \parallel \overline{BC}$, we have that $\overline{GA} = \overline{AB}$. We also have that $\triangle BFG$ is a right triangle, so \overline{BG} is the diameter of its circumcircle. Thus, A is the center of this circle, so \overline{AF} and \overline{AB} are radii and must have equal length. Therefore, $\triangle ABF$ is isosceles.

sjmathcircle@gmail.com

Problem 5 One interesting property with Fibonacci numbers is that they follow Binet's formula. That is

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \right)$$

where F_n is the n^{th} Fibonacci number where $F_0 = 0$ and $F_1 = 1$. If $\lfloor x \rfloor$ is the greatest integer less than or equal to x, then show that

$$F_n = \left\lfloor \frac{1}{\sqrt{5}} ((\frac{1+\sqrt{5}}{2})^n + 1) \right\rfloor$$

for $n \ge 0$.

Solution We use the fact that $a = \lfloor b \rfloor$ for integer a if and only if $0 \le b - a < 1$. Thus, we want to show that

$$0 \le \left(\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n + 1\right)\right) - \left(\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)\right) < 1$$

Cancelling out common terms, we get simplify the expression to

$$0 \le \frac{1}{\sqrt{5}} \left(1 - \left(-\left(\frac{1 - \sqrt{5}}{2}\right)^n\right)\right) = \frac{1}{\sqrt{5}} \left(1 + \left(\frac{1 - \sqrt{5}}{2}\right)^n\right) < 1$$

Note that $\left|\frac{1-\sqrt{5}}{2}\right| < 1$ so $\left|\left(\frac{1-\sqrt{5}}{2}\right)^n\right| \le 1$ for all $n \ge 0$. From this, we deduce that $0 \le 1 + \left(\frac{1-\sqrt{5}}{2}\right)^n \le 2$ and that $0 \le \frac{1}{\sqrt{5}}\left(1 + \left(\frac{1-\sqrt{5}}{2}\right)^n\right) < 1$. We have now proved that

$$F_n = \left\lfloor \frac{1}{\sqrt{5}} ((\frac{1+\sqrt{5}}{2})^n + 1) \right\rfloor$$